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Asymmetric Particle Systems on R
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We study interacting particle systems on the real line which generalize the
Hammersley process [D. Aldous and P. Diaconis, Prob. Theory Relat. Fields
103:199�213 (1995)]. Particles jump to the right to a randomly chosen point
between their previous position and that of the forward neighbor at a rate which
may depend on the distance to the neighbor. A class of models is identified for
which the invariant particle distribution is Poisson. The bulk of the paper is
devoted to a model where the jump rate is constant and the jump length is a
random fraction r of the distance to the forward neighbor drawn from a prob-
ability density ,(r) on the unit interval. This is a special case of the random
average process of Ferrari and Fontes [El. J. Prob. 3 (1998)]. The discrete-time
version of the model has been considered previously in the context of force
propagation in granular media [S. N. Coppersmith et al., Phys. Rev. E 53:4673
(1996)]. We show that the stationary two-point function of particle spacings
factorizes for any choice of ,(r). Under the assumption that this implies pairwise
independence, the invariant density of interparticle spacings for the case of
uniform ,(r) is found to be a gamma distribution with parameter &, where
&=1�2, 1, and 2 for continuous-time, backward sequential, and discrete-time
dynamics respectively. A heuristic derivation of a nonlinear diffusion equation is
presented, and the tracer diffusion coefficient is computed for arbitrary ,(r) and
different types of dynamics.

KEY WORDS: Interacting particle systems; random average process;
invariant product measures; discrete-time dynamics; hydrodynamic limit; single-
file diffusion; granular packings.

1. INTRODUCTION AND OUTLINE

In this paper we are concerned with systems of interacting particles moving
on the real line. The models of interest can be described as follows: Let
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xi # R denote the position of the i th particle. In an elementary move par-
ticle i jumps to the right to a position xi+$i between xi and xi+1>xi . In
the absence of a lattice spacing, there are two natural ways of setting the
scale for the jump distance $i : It can be imposed externally through the
choice of a fixed probability density fi ($i ), in which case moves with
$i>xi+1&xi have to be rejected, or the scale can be set by the gap or
``headway''

ui=xi+1&xi (1.1)

in front of particle i by letting fi depend on the configuration U#[ui ]i # Z

as

fi ($i | U)=u&1
i ,($ i �ui ) (1.2)

where ,(r) is a probability density with support on the unit interval. Equa-
tion (1.2) implies that the jump length $i is a random fraction r of the
headway ui . The rate for the move is a function #(ui ) of the headway. The
moves are executed in continuous time (in which case each particle is
equipped with an exponential clock) or in discrete time; in the latter case
the particle positions are updated either in parallel, or sequentially by
going through the system against the direction of particle motion. A model
is defined by specifying the functions fi ($) and #(u) as well as the type of
dynamics (continuous time, parallel or sequential).

Two equivalent representations of the dynamics will prove to be use-
ful. In terms of the headway variables ui the particle configuration may be
visualized as a system of sticks located at the sites i of the integer lattice,
ui being the length of stick i. In an elementary move a fraction $i of stick
i is broken off and added to stick i&1.(30, 26) Alternatively, the particle
positions xi (t) can be taken to define the height of a one-dimensional
interface above the point i. The asymmetric particle motion translates into
a growth process, and the fact that particles cannot pass each other implies
that the interface is a monotonically increasing staircase (xi+1&x i>0) at
all times. We will refer to these two viewpoints as the stick representation
and the interface representation, respectively.

For continuous time dynamics, a jump length distribution of the type
(1.2) with , uniform, and #(u)=u the model reduces to the Hammersley
process discussed in ref. 1. In this case the invariant distribution of particle
positions is Poisson. Here we are interested in obtaining similar results for
other choices of fi and #, and other types of dynamics. Our motivation is
mainly conceptual: While a wealth of results(22, 32, 15, 23, 32) are available for
particle systems on the integer lattice such as the asymmetric simple exclusion
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process, (31) little is known analytically for the case of continuous particle
positions, although motion on the real line appears naturally e.g., in
applications to highway traffic.(16�18)

An important simplifying feature of the asymmetric exclusion process
is the existence of stationary product measures. Here the analogous
desirable property is the product form

P(U)=`
i

P(ui ) (1.3)

for the stationary probability of a configuration U of particle headways.
Therefore a primary goal will be to find nontrivial examples of asymmetric
particle systems on R for which (1.3) holds.

We provide an outline of the paper. In the next section we explore the
conditions for a Poisson distribution of particle positions (corresponding
to an exponential distribution of interparticle spacings in (1.3)) to be
invariant for continuous time dynamics. Our strategy is to consider a finite
number N of particles moving on a ring of length L, and to demand that
the stationary measure gives the same weight to all allowed configuration;
this then implies a Poisson measure for N, L � � at fixed density \=N�L.
Provided the jump rate # is independent of the headway, we find that the
Poisson measure is invariant for arbitrary externally imposed (i.e., con-
figuration and particle independent) jump length distributions f (u). On the
other hand, if the jump length is scaled to the headway as in (1.2), the
Poisson measure is stationary only for a one-parameter family of power
law functions , and #, which have been identified previously in the context
of (symmetric) stick models.(10)

Sections 3 and 4, which constitute the main part of the paper, are
devoted to models with constant jump rate, ##1 independent of the
headway, and jump length distributions of the type (1.2). In the interface
representation these belong to the class of random average processes
(RAP) studied by Ferrari and Fontes:(12) The particle position x$i after the
move is an average

x$i=rx i+(1&r) xi+1 (1.4)

of the previous positions xi , xi+1 , with a random weight r # [0, 1] drawn
from the probability density ,(r). We therefore refer to these models as
Asymmetric Random Average Processes (ARAP). Discrete time ARAP's
have been introduced previously to model force fluctuations in random
bead packs.(24, 7, 6) In that context the headway ui (t) represents the (scaled)
force supported by bead i at depth t below the surface of a two-dimensional
packing (see Section 3.2.1).
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In Section 3.1.1 we show, for the case of continuous time dynamics,
that the two-point correlation function of particle headways (ui uj) factor-
izes in the stationary state for any choice of ,(r), and obtain the expression

(u2)&(u) 2=
+2

\2(+1&+2)
(1.5)

for the stationary variance of headways in terms of the moments

+n=|
1

0
dr rn,(r) (1.6)

of ,(r) and the particle density \. Similar results for the discrete time
models are derived in Section 3.2.

More detailed information about the stationary headway distribution
can be obtained when ,(r) is the uniform distribution on [0, 1]. Assuming
that the factorization property of the two-point function implies pairwise
independence of the ui , we derive and solve stationarity conditions for their
moments, which show that the invariant density of headways (normalized
to (ui) =1) takes the form of a gamma distribution,

P&(u)=
&&

1 (&)
u&&1e&&u (1.7)

where the parameter & depends on the dynamics: For continuous time
dynamics &=1�2, while sequential and parallel dynamics yield &=1 and 2,
respectively. The result for parallel dynamics has been previously derived
by Coppersmith et al., (7) who also gave an explicit proof of the factoriza-
tion property (1.3). Equation (1.7) implies bunching of particles (enhanced
density fluctuations compared to the Poisson measure) for continuous time
dynamics (&=1�2) and antibunching for parallel dynamics (&=2). The
associated nontrivial particle�particle correlations are explicitly computed
in Section 3.3.

Based on numerical simulations, we conjecture that the stationary
single particle headway distribution is exactly given by (1.7) for all three
types of dynamics. For continuous time dynamics and a finite number of
particles on a ring the assumption of an invariant product measure is
examined in Section 3.1.2. Surprisingly, we find that the product measure is
not invariant for the ARAP, although it is invariant for a related symmetric
stick model. This conclusion agrees with recent results for the infinite
system obtained by Rajesh and Majumdar.(26)

Section 4 is devoted to the large scale, long time behavior of the
ARAP. We derive a hydrodynamic equation of singular diffusion type, and
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compute the tracer diffusion coefficient using a Langevin approach. Since
these results depend only on the stationary two-point function of head-
ways, they are valid for any choice of the jump length distribution ,(r).
Finally, some conclusions and open questions are formulated in Section 5.

2. MODELS WITH INVARIANT POISSON MEASURES

2.1. Constant Invariant Measure on the Ring

In this section we want to identify continuous time dynamics which
leave a Poisson distribution of particle positions invariant. For this pur-
pose we first consider N particles moving in continuous time on a ring of
length L, with density \=N�L. Allowed headway configurations then
satisfy the constraint

:
N

i=1

ui=L (2.1)

and the product measure (1.3) is required to hold on the set of configura-
tions defined by (2.1). For an exponential distribution P(u)te&\u this
implies that all allowed headway configurations carry the same weight
0(N, L)&1, where

0(N, L)=
LN&1

(N&1)!
(2.2)

denotes the volume of the set, i.e., the invariant measure is constant on
allowed configurations. It is straightforward to check that this implies
Poisson measure in the limit N, L � � at fixed density \. For example, the
distribution of a single headway on the ring is given by

PN, L(u)=
0(N&1, L&u)

0(N, L)
� \e&\u, N, L � � (2.3)

while the joint distribution of the headways of two neighboring particles is

PN, L(u i , ui+1)=
0(N&2, L&ui&u i+1)

0(N, L)
� \2e&\(ui+ui+1), N, L � �

(2.4)

A similar argument can be carried out for the probability distribution of
the particle positions on the ring.
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Invariance of the constant measure requires the total transition rates
for going into and out of any configuration to balance. This yields the
condition

:
N

i=1
|

ui&1

0
dw f i (w | U(i)(w)) #(ui+w)= :

N

i=1
|

ui

0
dw fi (w | U) #(ui ) (2.5)

for any configuration U, with the configuration U(i)(w)=[u (i)
j (w)] j # Z

defined through

ui+w: j=i
u (i)

j (w)={ui&1&w: j=i&1 (2.6)

uj : else

and periodic boundary conditions implied in the summation over i. Note
the upper integration limits, which ensure that particles cannot pass each
other ($i�ui ). Two examples of dynamics which satisfy (2.5) will be given
in the following.

2.2. Configuration-Independent Jump Length Distributions

If the jump rate # is independent of headway, the invariance condition
(2.5) is seen to hold for any jump length distribution f (w) which is inde-
pendent of the configuration and of the particle label i. The stationary
speed v� of particles at density \ is then computed from

v� =#\ |
�

0
du e&\u |

u

0
dw wf (w) (2.7)

and the current follows from j(\)=\v� (\). For example, for jump lengths
chosen uniformly in the unit interval one finds

j(\)=
#
\

[1&(1+\) e&\] (2.8)

It should be noted that in general the Poisson distribution is not the
unique invariant measure. For example, if f (w)=0 for w less than some
minimum jump length a, then all configurations with ui<a for all i are
trivially invariant. Numerical simulations indicate, however, that such
``absorbing'' states are typically not reached, even if the system is started
very close to them. If f (w)=$(w&1) and the particles are started on the
integer lattice, the model reduces to the asymmetric exclusion process,
which has a geometric (rather than exponential) headway distribution.
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2.3. Scale-Invariant Models

When the scale of the jumps is set by the headways, inserting (1.2) into
(2.5) and requiring the terms on both sides to cancel pairwise yields the
following integral equation connecting the functions , and #,

|
u

0
dw #(u$+w)

,(w�(u$+w))
u$+w

=#(u) (2.9)

which should be true for all u, u$. Taking the derivative with respect to u
this becomes a differential equation for #,

d#
du

=
#(v) ,(u�v)

v
(2.10)

with v=u+u$�u. Setting in particular v=u we see that # has to be a
power law function,

#(u)=#0 u:&1 (2.11)

where #0>0 is a constant and :=1+,(1). Using (2.10) the jump length
distribution is then found to be also a power law,

,(v)=(:&1) v:&2 (2.12)

Normalizability of , requires :>1.
Equations (2.11) and (2.12) define a one-parameter family of models

for which the Poisson distribution of positions is invariant for an arbitrary
number of particles N, the Hammersley process being given by :=2. The
corresponding symmetric stick models, in which the broken-off piece is
distributed with equal probability to the left or right neighbor, were con-
sidered by Feng et al.(10) Since # is a power law, these models are scale
invariant in the sense that the average particle spacing (ui) =1�\ is the
only length scale in the problem. Therefore also the stationary particle
current j is a power law function of the density. To compute it, we note
that the average particle speed is given by

v� =(#(ui ) $i)=\ |
�

0
du e&\u#(u) u |

1

0
dv v,(v)=#0(1&1�:) 1 (:+1) \&:

(2.13)

and therefore

j(\)=\v� =#0(1&1�:) 1 (:+1) \1&: (2.14)
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3. ASYMMETRIC RANDOM AVERAGE PROCESSES

The asymmetric random average process is a scale-invariant model
characterized by a jump length distribution of type (1.2), and a constant
jump rate ###0=1. The discussion is phrased most naturally in the stick
representation, and begins with the continuous time models.

3.1. Continuous-Time Dynamics

3.1.1. Stationary Headway Correlations. Consider first the
time evolution of the second moment (u2

i ) . In a small time interval 2t two
processes affecting ui may occur: A random fraction $i of ui may be lost to
i&1, and a random fraction $i+1 of ui+1 may be gained from i+1. Both
processes occur with probability 2t. Thus

(u2
i )(t+2t)=2t[( (u i&$i )

2) +( (ui+$i+1)2)]+(1&22t)(u2
i )(t)

(3.1)

Stationarity then implies

&2($i ui)+($2
i ) +2($i+1ui)+($2

i+1) =0 (3.2)

Since $j=rjuj where rj is an independent random variable with mean +1

and second moment +2 , we have that ($iui) =+1(u2
i ) , ($2

i ) =($2
i+1) =

+2(u2
i ) and ($ i+1ui)=+1(uiu i+1) . Thus (3.2) becomes

(+1&+2)(u2
i )=+1(u iui+1) (3.3)

Similarly for the general two-point function Ck#(uiui+k) we obtain the
stationarity condition

+1(Ck+1+Ck&1&2Ck)=+2C0($k, 1+$k, &1&2$k, 0) (3.4)

where translational invariance and symmetry (Ck=C&k) of the correla-
tions has been used. Solving Eq. (3.4) starting from k=0 one finds

Ck=[1&(+2�+1)(1&$k, 0)] C0 (3.5)

Imposing the boundary condition limk � � Ck=(u i)2=1�\2 for an infinite
system of density \, Eq. (3.5) then shows that the two-point function fac-
torizes for any k�1 and the variance of headways is given by (1.5).
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3.1.2. Stationary Headway Distribution for Uniform ,(r).
We now specialize to the case when the distribution of scaled jump lengths
,(r) is uniform in [0, 1], and assume that the factorization property which
was verified above for the two-point function implies the pairwise inde-
pendence of the ui . Then the stationarity condition for the n th moment

( (ui+$i+1)n) +( (u i&$i )
n)=2(un

i ) (3.6)

yields (the index i of ui is now dropped)

:
n

k=0
\n

k+
1

k+1
[(un&k)(uk) +(&1)k (un)]=2(un) (3.7)

which can be rewritten as a recursion relation,

(un) =
n+1
n&1

:
n&1

k=1
\n

k+
1

k+1
(un&k)(uk) (3.8)

Evaluating this expression for n=1,..., 5 we find that the relation

(un) =_ `
n

k=1

(2k&1)& (u) n (3.9)

appears to hold, which is characteristic of the gamma distribution (1.7)
with parameter &=1�2.

To prove it, we first insert (3.9) into (3.8), and obtain

\2n
n +=

n+1
n&1

:
n&1

k=1

1
k+1 \

2k
k +\

2(n&k)
n&k + (3.10)

This can be verified using the binomial expansion

1
2 (1&4x)&1�2= 1

2+ :
�

k=1
\2k&1

k&1 + xk (3.11)

Integrating with respect to x we also have

&
1
4

(1&4x)1�2=&
1
4

+
x
2

+ :
�

k=1

1
k+1 \

2k&1
k&1 + xk+1 (3.12)

Since the product of the left hand sides is a constant, all coefficients of xm

with m>0 in the series obtained by multiplying (3.11) and (3.12) must
vanish. After rearranging terms this is seen to imply (3.10).
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Table I. Numerical Estimates of the First Few Moments of the Stationary
Headway Distribution for the ARAP with Uniform ,(r) and Different

Kinds of Updatea

Dynamics (u2) (u3) (u4) (u5)

Continuous 2.998\1 15.02\1 105.3\2 947\3
(3) (15) (105) (945)

Sequential 1.9997\2 5.995\2 23.93\2 119.2\2
(2) (6) (24) (120)

Parallel 1.4998\1 2.996\1 7.466\3 22.26\2
(3�2) (3) (15�2) (45�2)

a The data were obtained from simulations of systems of 2_105 particles which were started
from an ordered initial condition, ui=1 for all i, and allowed to evolve for 104 time steps.
To extrapolate to t � �, each run was fitted to Eq. (3.13), and the errors were estimated
by taking an average over 10 runs (errors refer to the last digit shown). The numbers in
parentheses are the conjectured values of the moments; for the case of parallel update these
are known to be exact.(7) The remaining discrepancies are in fact largest for parallel update,
and can probably be attributed to residual finite time effects.

In fact the relation (3.9) was first guessed on the basis of numerical
simulations. Rather accurate numerical estimates for the stationary moments
of ui can be obtained by starting from an ordered initial condition (ui=1
for all i) and fitting the finite time data to the form

(un)(t)=An+Bn t&1�2 (3.13)

which is suggested by the fluctuation theory of Section 4.2 (see Eq. (4.21)).
The results shown in Table I strongly indicate that the stationary single
particle headway distribution is exactly given by the &=1�2 gamma dis-
tribution.

To test for the existence of an invariant product measure, we proceed
as in Section 2 and consider a finite number N of particles on a ring. The
condition for the product measure (1.3), restricted to the set (2.1) of
allowed configurations, to be invariant now reads

:
N

i=1
|

ui&1

0

dw
ui+w

P(ui+w) P(u i&1&w)
P(u i ) P(u i&1)

= :
N

i=1

#(ui )=N (3.14)

Inserting the gamma distribution with parameter &=1�2 (Eq. (1.7)) and
noting that

|
v

0
dw(u+w)&3�2 (v&w)&1�2=

2 - v�u
u+v

(3.15)
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the condition (3.14) becomes

:
N

i=1

2ui&1

ui+ui&1

=N (3.16)

with periodic boundary conditions, u&1=uN . Equation (3.16) is satisfied
for N=2, but not for general N. We conclude that the product measure
(1.3) is not invariant for N different from 2. It is however the exact
invariant measure for the symmetric stick process obtained by transferring
the piece broken off stick i to i&1 or i+1 with equal probability. Indeed,
in that case the left hand side of (3.16) becomes

:
N

i=1

ui&1

ui+ui&1

+
u i+1

ui+ui+1

=N (3.17)

While these arguments are restricted to finite systems, the conclusions
agree with calculations carried out for the infinite system by Rajesh and
Majumdar.(26) Specifically, they show that the product measure ansatz for
the continuous time ARAP breaks down at the level of three-point correla-
tions, but is exact for the symmetric stick model.

3.2. Discrete-Time Dynamics

3.2.1. Parallel Update. A discrete time version of the ARAP is
obtained by writing

ui (t+1)=u i (t)&$i (t)+$i+1(t) (3.18)

where $j=rj uj with independent random numbers rj distributed according
to the density ,(r). This is closely related to a model introduced by
Coppersmith, Liu, Majumdar, Narayan and Witten for the description of
force fluctuations in bead packs.(7) To see the connection, let W(i, t) denote
the weight supported by bead i in the tth layer below the (free) surface of
the packing. The key assumption of the model is that the beads are
arranged on a regular lattice, and that each bead transfers its weight to
exactly M beads in the layer below. The fraction qij (t) # [0, 1] of the
weight of bead i in layer t which is transferred to bead j in layer t+1
defines a matrix with random entries subject to the constraint � j qij (t)=1.
Assigning unit mass to each bead, the weights evolve according to

W( j, t+1)=1+:
i

q ij (t) W(i, t) (3.19)
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For large t all weights increase linearly with t, which suggests to introduce
normalized variables U(i, t)=W(i, t)�t. Specializing to a two-dimensional
lattice where the beads are labeled such that bead i is connected to beads
i and i+1 in the layer below, we see that for t � � the evolution of the
U(i, t) reduces to (3.18) with the identification qii=1&ri and qi+1i=ri+1 .
In the context of beak packs qii and qi+1i should have the same distribu-
tion, and hence strict equivalence between the two models holds only when
,(r) is symmetric around r=1�2.

Let us first show that the stationary two-point headway correlations
factorize for any ,(r). Proceeding as above in Section 3.1.1, we obtain the
stationarity condition

(+1&+2
1)(Ck+1+Ck&1&2Ck)=(+2&+2

1) C0($k, 1+$k, &1&2$k, 0) (3.20)

with the solution

Ck=[1&(+2&+2
1)�(+1&+2

1)(1&$k, 0)] C0 (3.21)

As in the continuous time case this implies factorization for k�1 in the
infinite system, with the stationary variance of headways given by

(u2)&(u) 2=
+2&+2

1

\2(+1&+2)
(3.22)

For the case of a uniform distribution ,(r), Coppersmith et al.(7) (see
also refs. 25 and 26) have shown explicitly that the stationary measure
takes the product form (1.3), with the headway distribution P(u) given by
the gamma distribution (1.7) with &=2. The latter is easily derived along
the lines of Section 3.1.2. Under the assumption of pairwise independence,
the stationarity condition for general moments (un

i ) now reads

(un) =
1

(n&1)(n+2)
:

n&1

k=1
\n+2

k+1+ (un&k)(uk) (3.23)

A straightforward computation shows that this is solved by the expression

(un)=2&n(n+1)! (u) n (3.24)

for the moments of the gamma distribution (1.7) with parameter &=2.

3.2.2. Ordered Sequential Update. In the context of traffic
modeling(9, 27) it has been found useful to implement a different kind of
discrete time dynamics, in which the particles are moved one by one, in the

42 Krug and Garc@� a



order of their positions in the system. This ordered sequential update can
proceed either in the direction of particle motion (forward update) or
against it (backward update). For the ARAP it is easy to see that the
forward update is equivalent to the parallel dynamics discussed in Sec-
tion 3.2.1, however the backward update is not.

In the stick representation, backward sequential update implies that
stick i first receives a random fraction of stick i+1, placing it in an inter-
mediate state of length u$i , and subsequently transfers a random fraction $$i
of u$i to stick i&1. It is important to note that, at the time of transfer of
mass to stick i, stick i+1 has already received mass from i+2 and thus the
amount transferred from i+1 to i is a random fraction of u$i+1>u i+1 . The
dynamics therefore proceeds in two steps,

u$i (t)=ui (t)+$$i+1(t) (3.25)

ui (t+1)=u$i (t)&$$i (t) (3.26)

where $$j is a random fraction of u$j . Taking the average of both sides of
(3.25) or (3.26) the stationary mean of u$i is seen to be

(u$)=
(u)

1&+1

=
1

\(1&+1)
(3.27)

Equation (3.26) implies the relation

Ck=[(1&+1)2+(+2&+2
1) $k, 0] C$k (3.28)

between the stationary two-point functions Ck of ui and C$k of u$i . Using
(3.25) it is easy to show that the stationarity condition for C$k is identical
to the condition (3.20) obtained in the case of parallel update. Therefore
also C$k factorizes in the infinite system, and through (3.28) this property
carries over to Ck . For the stationary variance of the backward sequential
update model we find the expression

(u2) &(u) 2=
+2&+2

1

\2(1&+1)(+1&+2)
(3.29)

Turning to the stationary headway probability distribution P(u), we
again assume pairwise independence and note the functional equation

P(u)=|
1

0
dr r&1,(1&r) P$(u�r) (3.30)
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relating P(u) to the distribution P$(u$) of the intermediate state headway.
For uniform ,(r) the stationarity condition for the n th moment of u$i then
reads

( (u$i )
n) =( (u i+$$i+1)n)= :

n

k=0
\n

k+
1

k+1
( (u$i )

k)(un&k
i ) (3.31)

Using the relation ( (u$)n) =(n+1)(un) obtained from (3.30) this reduces
to

(un) =
1

n+1
:
n

k=0
\n

k+ (uk)(un&k) (3.32)

which is solved by setting (un) =n!(u) n. We conclude that P(u) is an
exponential distribution (a gamma distribution (1.7) with &=1). This is
confirmed by the numerical data shown in Table I.

From (3.30) the distribution of the intermediate state headway is
found to be a &=2 gamma distribution with mean 2(u) =2�\,

P$(u)=\2ue&\u (3.33)

Given the equivalence between the intermediate state headway and the
headway for parallel update which we found on the level of the two-point
function, it is no surprise that (3.33) is identical, up to a scale factor, to the
headway distribution P(u) for parallel dynamics.

3.3. Particle�Particle Correlations

In this section we illustrate how the product measure (1.3) with the
headway distribution (1.7) translates into nontrivial particle�particle
correlations when &{1. For example, the probability density g(x) for
finding a particle at x, conditioned on having a particle at the origin, can
be written as

g(x)= :
�

n=1

Pn(x) (3.34)

where Pn(x) is the probability density for the n th particle to be at x when
the 0th is at the origin or, equivalently, the probability that �n&1

i=0 ui=x.
The Pn are obtained iteratively from P1(x)=P(x) through the convolution

Pn(x)=|
x

0
dy Pn&1( y) P(x& y) (3.35)
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Inserting the gamma distributions (1.7) with parameters &=1�2 and &=2,
one finds that

Pn(x)=\(1 (n�2) 2n�2)&1 (\x)n�2&1 e&\x�2 (3.36)

for the continuous time case, and

Pn(x)=
22n\

(2n&1)!
(\x)2n&1 e&2\x (3.37)

for parallel dynamics.
In the parallel case the evaluation of the sum (3.34) is straightforward,

and yields the expression

g(x)=\(1&e&4\x) (3.38)

for the correlation function, which explicitly displays the tendency of
particles to avoid each other at distances short compared to 1�\.

To compute (3.34) with the Pn given by (3.36), it is useful to write g
as the sum of two contributions geven and godd from even and odd n, respec-
tively. One finds that geven(x)=\�2 independent of x, while the odd part
can be brought into the form

godd(x)=P1(x)+
\

2 - ?
e&\x�2 :

�

m=1

(m&1)!
(2m&1)!

(- 2\x)2m&1 (3.39)

To sum the series we write (m&1)!=��
0 dz zm&1e&z and interchange the

summation over m with the integration over z. This yields finally

g(x)=� \
2?x

e&\x�2+
\
2

(1+erf - \x�2) (3.40)

with the error function erf(z)=(2�- ?) �z
0 dt e&t2

. For x � 0 the correlation
function is dominated by P1(x) and correspondingly diverges as 1�- x,
reflecting the tendency of particles to bunch together in the continuous
time case. For x � � g(x) decays somewhat faster than exponentially, as

g(x)&\r
\

- 2? (\x)3
e&\x�2 (3.41)
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Alternatively the correlations between particles can be characterized
through the variance (2NL)2 of the number of particles NL in an interval
of size L. When L is small compared to the mean interparticle spacing NL

is either 0 or 1, and (2NL)2=\L. For L>>1�\ a central limit argument
shows that

(2NL)2
r/L (3.42)

where the ``compressibility'' / (defined in analogy with equilibrium
systems(32)) is given by

/(\)=\3((u2) &(u) 2)=\�& (3.43)

with the parameter & of the headway distribution (1.7). Thus the slope
of (2NL)2 versus L changes from \ for L<<1�\ to \�& for L>>1�\, reflect-
ing the increase (decrease) of particle number fluctuations for continuous
time (parallel) dynamics, respectively. The compressibility is related to the
pair correlation function (3.34) through

/=\ \1+|
�

&�
dx(g(x)&\)+ (3.44)

4. LARGE-SCALE DYNAMICS OF THE ARAP

4.1. Hydrodynamic Equation

The average particle speed v� in the ARAP is inversely proportional to
the density, hence the current j=\v� is independent of \. The dynamics on
the Euler scale xtt is therefore trivial, and one expects a hydrodynamic
equation of diffusion type.(32) A simple derivation will be given below.
Throughout this section we consider a general scaled jump length distribu-
tion ,(r).

4.1.1. Continuous-Time Dynamics. In the continuous time
case the ensemble averaged particle positions Xi#(x i) evolve according
to the linear equations

dXi

dt
=+1(Xi+1&X i ) (4.1)

This problem has been studied previously in the context of crystal
growth, (19) and the procedure can be directly applied to the present
context.
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To extract the long wavelength behavior, we introduce a scaling
parameter(32, 15) = and a smooth function !( y, {) such that

Xi (t)=!(=i, =t) (4.2)

Inserting this into (4.1) and expanding to second order in = we obtain

+&1
1

�!
�{

=
�!
�y

+
=
2

�2!
�y2 (4.3)

In the scaling limit = � 0 this becomes a first order equation which
describes simple translation to the left.(12)

Here we will however postpone to take the limit, and first carry out
a Lagrange transformation, (28, 19) which relates the Lagrangian description
in terms of the particle positions Xi (t) to the Eulerian evolution of the
density field. The local density \ near the position of particle i is estimated
as (Xi+1&Xi )

&1, so using (4.2) we have the relation

\(!( y, {), {)==&1(�!��y)&1 (4.4)

Differentiating this equation with respect to { and using the evolution
equation (4.3) for !( y, {) one obtains, after some algebra,

�\
�t

==
�\
�{

=
�

�x \
+1

2\2+ �\
�x

(4.5)

The scaling factor = cancels, and the collective diffusion coefficient is iden-
tified to be

Dc(\)=
+1

2\2 (4.6)

The \&2-dependence is dictated by scale invariance: The typical jump
length in a region of density \ is $� =+1 �\, and Dct#$� 2

t\&2.

4.1.2. Discrete-Time Dynamics. For discrete parallel update
Eq. (4.1) is replaced by

Xi (t+1)&Xi (t)=+1[X i+1(t)&Xi (t)] (4.7)

In the scaling limit = � 0 this results in the same coarse grained evolution
equation (4.3), and thus also the nonlinear diffusion equation (4.5) is the
same as in the continuous time case.

47Asymmetric Particle Systems on R



In the case of ordered sequential update one has to take into account
that the new position of particle i is a random average of its old position
and the new position of particle i+1, hence

Xi (t+1)&Xi (t)=+1[X i+1(t+1)&Xi (t)] (4.8)

Making the ansatz Xi (t)=i�\+v� t, we see that the average particle speed is

v� =
+1

\(1&+1)
>

+1

\
(4.9)

The speedup compared to continuous time and parallel dynamics is due to
the decrease of the local density near the update site, see ref. 27 for a dis-
cussion of similar effects in the asymmetric exclusion process. For the
derivation of the hydrodynamic equation it is useful to incorporate the
expected diffusive scaling from the outset and replace (4.2) by

Xi (t)=!(=i, =2t) (4.10)

The expansion of (4.8) to second order in = then yields

\1&+1

+1 + �!
�{

==&1 �!
�y

+
1
2

�2!
�y2 (4.11)

As before, the drift term disappears under the Lagrange transformation
based on the relation (4.4), and one obtains

�\
�t

==2 �\
�{

=
�

�x \
+1

2(1&+1) \2+ �\
�x

(4.12)

As far as the hydrodynamics is concerned, the different types of dynamics
are seen to be equivalent up to a rescaling of time.

4.2. Tracer Diffusion

Hydrodynamic equations of diffusion type are usually associated with
symmetric (unbiased) particle systems.(32) In one dimension the tracer dif-
fusion coefficient in such systems typically vanishes, and the mean square
displacement of a tagged particle grows subdiffusively as t1�2.(2, 3) By con-
trast, the biased random average process shows normal tracer diffusion
when started from a random initial condition and subdiffusive behavior
when the initial configuration is ordered.(12) Here we provide a compact
derivation of the two cases and compute the coefficient of the asymptotic
law for different types of dynamics.
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4.2.1. Langevin Approach for Continuous-Time Dynamics.
We start the system in an initial condition without long wavelength fluc-
tuations, such as xi (0)=i�\, i # Z, and denote the positional fluctuation of
particle i by

`i (t)=xi (t)&(xi) =xi (t)&xi (0)&v� t (4.13)

For the purpose of extracting the long time behavior of fluctuations,
a Langevin approximation(13) to the dynamics of `i is sufficient. Thus we
add a phenomenological noise term 'i (t) to the linear equation (4.1),

d`i

dt
=+1(`i+1&` i )+'i (4.14)

The noise is taken Gaussian with zero mean and covariance

('i (t) 'j (t$)) =_$ij$(t&t$) (4.15)

The noise strength _ will eventually be matched to the variance of particle
headways.

Equation (4.14) is solved by introducing the Fourier transformed
fluctuations

�̀ (q, t)= :
n # Z

eiqn`n(t) (4.16)

with wave numbers q in the first Brillouin zone [&?, ?], and the corre-
sponding Fourier transformed noise

'̂(q, t)= :
n # Z

eiqn'n(t) (4.17)

with covariance

('̂(q, t) '̂(q$, t$)) =2?_$(q+q$) $(t&t$) (4.18)

The most general quantity of interest is the variance of the displacement
between particle i at time t and particle j at time t$. By translational
invariance this depends only on n=i& j and is given by the correlation
function

Gn(t, t$)=( (`0(t)&`n(t$))2) (4.19)
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Inserting (4.16) into (4.14), solving the equation for �̀ (q, t) and averaging
over the noise according to (4.18) one arrives at the expression

Gn(t, t$)=
_
2? |

?

0

dq
|(q)

(2&e&2|t&e&2|t$

&2 cos[qn&+(q) T ](e&| |T |&e&|T $)) (4.20)

with |(q)=+1(1&cos(q)), +(q)=+1 sin(q), T=t$&t and T $=t$+t.
The evaluation is straightforward in the relevant limiting cases.

Consider first the variance of the headways at time t=t$. For large t (4.20)
yields

G1(t, t)r
_
+1 \1&

1

2 - ?+1 t+ (4.21)

This allows us to identify the noise strength _ as

_=+1((u2) &(u) 2) (4.22)

and explicitly demonstrates the 1�- t -approach to the stationary headway
distribution alluded to in (3.13).

Next we focus on the dynamics of a single particle and set n=0 in
(4.20). If we fix the time increment T=t$&t and let both t and t$ � �, G0

represents the mean square displacement of a particle in the stationary
regime. Evaluation of (4.20) gives G0(t, t$)r_ |T |, which shows that _ is
precisely the tracer diffusion coefficient Dtr . Combining this with (4.22) and
(1.5) we obtain

Dtr=+1((u2) &(u) 2)=
+1+2

\2(+1&+2)
(4.23)

In fact the first relation in (4.23) is easy to understand. The linear equation
(4.3) shows that fluctuations in the particle positions drift backwards in
``label space'' y==i. This translates the stationary distance fluctuations into
temporal fluctuations, with a conversion factor given by the drift speed +1 .
As was mentioned already, the existence of a nonvanishing tracer diffusion
coefficient for models with a hydrodynamic equation of diffusion type is
unusual in one dimension, since generically such an equation implies sym-
metric particle jumps, in which case the tracer particle displacement grows
only subdiffusively due to the single file constraint.(2, 3) Here Dtr is nonzero
because the particles move, at speed v� , relative to the (stationary) density
fluctuations. A rigorous derivation of (4.23) has recently been presented by
Schu� tz.(29)
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Since the hydrodynamic equations in the two cases are identical, the
argument leading to the first relation in (4.23) carries over directly to
discrete parallel update, and using (3.22) we conclude that the tracer diffu-
sion coefficient in this case is given by

Dpar
tr =

+1(+2&+2
1)

\2(+1&+2)
(4.24)

Similarly the expression

Dseq
tr =

+1(+2&+2
1)

\2(1&+1)2 (+1&+2)
(4.25)

is obtained for the backward sequential case by combining Eqs. (3.29) and
(4.9). Both (4.24) and (4.25) have been verified numerically for the case of
uniform ,(r).

Subdiffusive behavior is found in the mean square displacement of a
particle starting from an initial configuration without long wavelength dis-
order.(12) This is given by (4.20) with n=t$=0. For large t one obtains

(`2
0(t)) =G0(t, 0)r_ � t

?+1

=
+2

\2(+1&+2) �
+1 t
?

(4.26)

Using (3.43) and (4.6) this is seen to agree with the expression

(`2
0(t)) =- 2�? (/�\2) - Dc t (4.27)

derived from hydrodynamic arguments.(3)

4.2.2. The Independent Jump Approximation. For the totally
asymmetric simple exclusion process it is known(31, 2, 11) that the motion of
a tagged particle in the stationary state follows a Poisson process, and
therefore the tracer diffusion coefficient is simply equal to the mean speed
1&\. Here we show that the expressions (4.23)�(4.25) for the ARAP are
consistent with a similar independent jump picture.

Consider first the case of discrete time dynamics, where the random
choice of the jump length $i is the only source of disorder, and therefore
the tracer diffusion coefficient for independent jumps is equal to the
variance of $i . For parallel update $i is a uniform random fraction of the
particle headway u i , hence ($2) &($) 2=+2(u2) &+2

1 �\2, which is easily
checked to coincide with (4.24). For the backward sequential case $i is a
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random fraction of the intermediate state headway u$i . Therefore, using
Eqs. (3.28), (3.27) and (3.29),

($2) &($) 2=+2( (u$)2) &+2
1(u$) 2=

1
(1&+1)2 \ +2(u2)

1&2+1++2

&
+2

1

\2+
(4.28)

which is also found to agree with (4.25).
In the continuous time case the random timing of jumps introduces an

additional source of disorder. It is natural to assume, in analogy with the
asymmetric exclusion process, that the jumps occur according to a Poisson
process. In the independent jump approximation the particle displacement
2x in time t is then given by

2x(t)= :
n(t)

l=1

$(l ) (4.29)

where n(t) is a Poisson random variable with mean t and the jump lengths
$(l ) are independent random fractions of the (independent, random) par-
ticle headways. It is straightforward to show that the variance of 2x is

( (2x)2) &(2x) 2=($2) t (4.30)

thus in this case the independent jump approximation to Dtr is ($2) =
+2(u2) in agreement with (4.23).

5. SUMMARY AND OUTLOOK

We have presented results for two classes of particle systems on R. The
models considered in Section 2 have Poisson invariant measures and non-
linear current density relations (see Eqs. (2.8) and (2.14)). Time-dependent
fluctuations in these models are therefore expected(4, 20) to be governed by
the noisy Burgers (or Kardar�Parisi�Zhang (14)) equation, which is not
amenable to simple analysis. By contrast, the asymmetric random average
processes introduced in Section 3 have nontrivial invariant measures, but
the linearity of the jump rules allows for a detailed study of dynamic
properties (Section 4).

A central result for the ARAP is the dependence of the headway dis-
tribution (1.7) on the type of dynamics. The idea that parallel update
reduces density fluctuations is familiar from earlier work on the asymmetric
exclusion process and related models for traffic flow, however in that case
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the ordered sequential update produces the same (Bernoulli) invariant
measure as the continuous time process.(27)

Our study suggests that the invariant measure of the continuous time
ARAP displays an unusual combination of features: The two-point
headway correlations factorize, the single particle headway distribution
appears to be exactly given by the expression (1.7) derived under the
assumption of pairwise independence, but nevertheless the product measure
(1.3) is not invariant. Rajesh and Majumdar have found the same features
in a larger class of models which interpolate between continuous time and
parallel update.(26) It would be most interesting to find a simple ``deforma-
tion'' of the product measure which explains this behavior. The status of
the product measure assumption for the ordered sequential update also
remains to be clarified. The considerations of Section 3.2.2 indicate that it
might be possible to exactly reduce this case to that of parallel update, for
which the product measure is known to be invariant.(7)

Another interesting direction for future work is the introduction of
quenched random inhomogeneities. In asymmetric exclusion models it is
possible to find invariant product measures also in the presence of random
jump rates associated with particles.(5, 21, 8, 9) For the ARAP with jump
rates #i depending on the particle label i (the position i in the stick
representation) preliminary numerical simulations indicate that the product
measures discussed above do not persist. It is possible to write down a
closed set of linear equations for the two-point function (uiuj) which
depends on the disorder configuration [#i ] and which should yield insight
into the emergence and nature of correlations. Here we merely remark that,
since the mean speed of particle i is #i($i) , stationarity implies (ui) =C�#i

where the constant C is fixed by the average headway. If the distribution
of jump rates is chosen such that (1�#i) exists, C � (1�#i) &1 in the limit
of infinite system size, and all headways have a finite mean. Otherwise (e.g.,
for a uniform distribution of jump rates) arbitrarily large headways will
open in front of the slowest particles, similar to the low density phase of
asymmetric exclusion models with particlewise disorder.(21, 8, 9)
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